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Abstract. We propose to test instanton models of QCD – in particular the single instanton approximation
and the Diakonov and Petrov model – against some exact relations inferred from QCD + QED axial
anomaly. One of these relations, in chiral limit, is satisfied by the latter model, but not by the former one.
More refined tests, obtained beyond the chiral limit, are not fulfilled by the Diakonov and Petrov model.

1 Introduction

As is well-known, quantum fluctuations may destroy the
symmetry of the classical lagrangian [1–3]. In gauge the-
ories the most important examples of this kind are the
axial anomalies in electroweak theory [2,3] and in QCD
[4,5]. The axial anomaly arises from noninvariance of the
fermionic measure against axial transformations in the
path integrals of the theory [6] (see also [7], concerning
higher-loop corrections). In Euclidean QCD+QED the ax-
ial anomaly reads

∂µj
5
µ = −iNf

g2

16π2GG̃− iNc
e2

8π2

∑
f

Q2
fFF̃

+2
∑

f

mfψ
†
fγ5ψf , (1)

where j5µ =
∑

f ψ
†
fγµγ5ψf (f = u, d, s) is the quark sin-

glet axial current, ψf the quark field, Nf the number of
the light flavors, g the QCD coupling constant, 2GG̃ =
εµνλσGa

µνG
a
λσ, Ga

µν the gluon field strength operator, Nc

the number of colours, e the QED coupling constant, Qf

the electric fractional charges of the quarks, Fµν the pho-
ton field strength operator. We have explicitly included
the contributions of the current masses of light quarks
mf .

Although the anomaly equations have been deduced
in the framework of perturbation theory [2,3] (see also [8,
9]), (1) has very important applications at low energies
[4,5,10–12], where nonperturbative solutions – especially
instantons [4] – play an essential role. In particular it has
been pointed out (see review [5] and references therein)
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that this equation leads to the nontrivial low-energy the-
orem (LET ) (2) and to the useful relations (3), (4) (see
below), which may be used as a test for instanton vacuum
models [13].

In the present article we consider further tests for such
models by means of the matrix elements of (1) (i) between
vacuum and two-photons states and (ii) between vacuum
and meson states.

As to case (i), nonvanishing of the η′ meson mass mη‘
even in chiral limit (due to axial anomaly) and an accu-
rate tensor analysis [14] imply that for real photons the
matrix element of the divergence of the singlet axial cur-
rent vanishes in the q2 << m2

η‘ limit, giving rise to the
following LET :

〈0|Nf
g2

16π2GG̃|2γ〉 = Nc
e2

4π2

∑
f

Q2
fF

(2)F̃ (3)

−2i
∑

f

mf 〈0|ψ†
fγ5ψf |2γ〉, (2)

where F (i)
µν = εi,µqi,ν − εi,νqi,µ and qi, εi (i = 2, 3) are re-

spectively the momenta and polarization vectors of pho-
tons and q = q2 + q3. Equation (2) is an exact low energy
relation, which cannot be fulfilled in the framework of per-
turbation theory. In this case the l.h.s. of (2) is of order
g4e2, since gluons can couple to photons only by virtual
quarks. On the contrary at the r.h.s. the first term does not
contain any strong coupling at all, nor any compensation
occurs with the second term, because this latter vanishes
in the chiral limit [5]. Only a nonperturbative contribu-
tion of order g−2 – as the one provided by instantons [15]
– may cancel the factor g2 at the l.h.s..

Further stringent tests for instanton vacuum models
can be obtained from the matrix elements of (1) between
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vacuum and meson states (case (ii)), i.e.,

〈0|Nf
g2

16π2GG̃|η〉 = −2ims〈0|ψ†
sγ5ψs|η〉, (3)

〈0|Nf
g2

16π2GG̃|π0〉 = −i(mu −md)〈0|ψ†τ3γ5ψ|π0〉. (4)

In order to calculate the l.h.s. of (2), we must consider
the three-point function

τµν(x1, x2, x3) = 〈0|T [g2GG̃(x1)jem
µ (x2)jem

ν (x3)]|0〉, (5)

(jem
µ being the electromagnetic current). In particu-

lar, according to our preceding observation, we need the
instanton contribution to τµν in the Euclidean space of
the three-point function, which contains all information
on the matrix element 〈0|GG̃|2γ〉 and also part of infor-
mation concerning η → 2γ decay, 2γ- transitions in heavy
quarkonia etc.

Instantons – whose presence in QCD is a well estab-
lished fact, at least at a phenomenological level and in
numerical simulations of QCD vacuum [18] – constitute
the main input to our calculations, especially in connec-
tion with quark propagation. To our present knowledge
the instanton structure of QCD vacuum is concentrated
in an average size ρ and in an average interinstanton dis-
tance R, such that [16,17]

ρ = 1/3fm, R = 1fm. (6)

Therefore the packing parameter (ρ/R)4 = 0.012 is small,
legitimating independent averaging over positions and ori-
entations of the instantons; moreover in some cases it is
even possible to use the quark propagator in the single-
instanton field [20].

In a previous work [13] LET was used as a test for the
Diakonov-Petrov (DP ) ansatz [21,23] of the low-energy
QCD effective action in the chiral limit. The ansatz, based
on an interpolation formula for the quark propagator in
the field of a single instanton, does satisfy LET to ∼ 17%
accuracy.

The aim of the present article is to test, first of all,
one-instanton approximation against LET in the chiral
limit and, secondly, the DP model against more refined
tests beyond the chiral limit.

In Sect. 2 we calculate τµν in single instanton approx-
imation. In Sect. 3 we rederive the DP effective action
starting from results of Lee&Bardeen [24] (LB) and ac-
counting for current quark masses mf . In Sect. 4 we cal-
culate τµν by this effective action and check it against
LET , both in chiral limit and beyond this approximation.
In Sect. 5 we calculate in the same framework both sides
of relations (3) and (4) and compare each l.h.s. with its
respective r.h.s.

2 Single-instanton approximation

A lot of papers [25–27] have been devoted to instanton
calculus in single-instanton approximation, where the cal-

culation of τµν amounts to computing integrals like
∫
d4z±dU±〈T (g2GG̃(x1)jem

µ (x2)jem
ν (x3)〉±

=
∑

f

Q2
f

∫
d4z±(GG̃(x1)±

×Tr(γµS±(x2, x3)γνS±(x3, x2)). (7)

Here z± and U± are the position and orientation of
the (anti-)instanton, assuming instanton integration sizes
to be peaked at ρ, (6); moreover

(g2GG̃(x))± = ±f(x− z) = ± 192ρ4

[ρ2 + (x− z)2]4
(8)

and S± = (iD̂± + im)−1 is the full quark propagator in
presence of a single (anti)instanton.

Starting from the expression of S± given in [20], we
obtain

τµν(x1, x2, x3)

=
N

V

192Ncρ
6

3π4

∑
f

Q2
f

∫
d4zh4(x1 − z)

×h(x2 − z)h(x3 − z)
(x2 − x3)2

×
[
h(x2 − z) + h(x3 − z)

(x2 − x3)2
+ h(x2 − z)h(x3 − z)

]

×εµναβ(x2 − z)α(x3 − z)β , (9)

where h(x) = (ρ2 + x2)−1. The correlator, that is the
Fourier transform τ̂µν of the three-point function τµν ,
which has to be tested against LET , results to be

τ̂µν(q1, q2, q3)

=
N

V

Ncρ
2

3π4

∑
f

Q2
f (2π)4δ(

∑
i

qi)f̂(q21)

×4!
∫ 1

0
ada

∫ 1

0
db(a(1 − a+ ab(1 − b))−3/2

×εµναβ(− ∂2

∂p2,α∂p3,β
)J(P ), (10)

as can be shown by applying the Feynman integration
technique. We have set

f̂(q21) =
∫
d4x1

192ρ4

(ρ2 + x2
1)4

exp(iq1x1),

J(P ) =
∫
d8Y [Y 2 + r2]−5 exp iPY , (11)

having introduced the 8-dim vectors P = (p2, p3), Y =
(y2, y3), with

p2 =
q2 + bq3

(1 − a+ ab(1 − b))1/2 , p3 =
q3
a1/2 , r

2 = ρ2(1 − ab).
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The latter integral (11) can be easily calculated and is
reduced to the MacDonald function, i.e.,

J(P ) =
π4

4!
P

r
K1(Pr), P = (P 2)1/2. (12)

In the limit of small momenta

K1(Pr) =
1
Pr

+
Pr

2
[ln

Pr

2
+ C − 1/2] + ..., (13)

where C = 0.577215... is the Euler constant.
Equations (10), (12), (13) imply that τ̂µν(q1, q2, q3) is

divergent for q2i → 0, that is, the model badly violates
LET . So does the improved single-instanton approxima-
tion [18], where the zero-mode contribution to the propa-
gator has been modified by replacing m by m∗, the effec-
tive mass of the quark, accounting for the influence of the
surrounding instantons. We conclude that single-instanton
approximation is not suitable for calculating three-point
functions at small momenta, owing to the slow decrease
of τµν at large distances. Indeed we have neglected rescat-
tering effects of quarks by other instantons, which, dur-
ing quark propagation, lead to the formation of the con-
stituent quark, producing a suitable effective mass and
providing needed exponential decrease with distance. Such
effects – which, by the way, do not affect appreciably the
two-point functions of vector currents – can be described
by an effective action, as we are going to show.

3 A derivation of the DP effective action

It is natural to choose the singular gauge for the instantons
in describing many instanton effects in the propagation of
the quarks. In the case of a small packing parameter it
is possible to do the following ansatz for the background
instanton field:

Aµ(x) =
N+∑
+

A+,µ(x; ξ+) +
N−∑
−
A−,µ(x; ξ−),

(ξ± = (z±, U±, ρ±)), (14)

where, zi, Ui and ρi the position, orientation and size of
the i-th instanton. The canonical partition function of the
N+instantons andN− antiinstantons can be schematically
written as

ZN+,N− =
∫
detN exp(−Vg)

N+,N−∏
i

d4zidUidn(ρi), (15)

where Vg is the instanton-(anti)instanton interaction po-
tential generated by the gluon field action and detN is a
quark determinant in the instanton field. The main as-
sumption of the instanton model is that Vg is repulsive at
small distances between instanton and antiinstanton. This
should provide the stabilization of the instanton sizes and
of the interinstanton distances. We mainly deal with detN ,
which describes the influence of light quarks.

Lee and Bardeen [24] (LB) calculated the quark prop-
agator in a more sophisticated approximation than single-
instanton, finding

detN = detB, Bij = imδij + aji, (16)

where aij is the overlapping matrix element of the quark
zero-modes Φ±,0 generated by instantons. This matrix el-
ement is nonzero only between instantons and antiinstan-
tons (and vice versa) due to the chiral factor in Φ±,0, i.e.,

a−+ = − < Φ−,0|i∂̂|Φ+,0 > . (17)

The overlapping of the quark zero-modes causes quark
jumping from one instanton to another one during prop-
agation.

Equation (16) implies that for N+ 6= N− detN ∼
m|N+−N−|, so the fluctuations of |N+ −N−| are strongly
suppressed due to presence of light quarks. Therefore we
assume N+ = N− = N/2.

Following the procedure suggested in [28], we get the
fermionization of LB’s result, i.e.,

detN =
∫
DψDψ† exp(

∫
d4x

∑
f

ψ†
f i∂̂ψf )

×
∏
f

(
N+∏
+

(imf + V+[ψ†
f , ψf ])

×
N−∏
−

(imf + V−[ψ†
f , ψf ])), (18)

where

V±[ψ†
f , ψf ] =

∫
d4x(ψ†

f (x)i∂̂Φ±,0(x; ξ±))

×
∫
d4y(Φ†

±,0(y; ξ±)i∂̂ψf (y)). (19)

Equation (18) coincides with the ansatz for the fixed N
partition function postulated by DP , except for the sign
in front of V±. Keeping in mind the low density of the
instanton media, which allows independent averaging over
positions and orientations of the instantons, (18) leads to
the partition function

ZN =
∫
DψDψ† exp(

∫
d4xψ†i∂̂ψ)WN+

+ W
N−
− , (20)

where

W± =
∫
d4ξ±

∏
f

(V±[ψ†
fψf ] + imf )

= (−i)Nf

(
4π2ρ̃2

Nc

)Nf

×
∫
d4z

V
det
f

(iJ±(z) − mNc

4π2ρ2 ) (21)
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and

J±(z)fg =
∫
d4kd4l

(2π)8
exp(−i(k − l)z)F (k2)

×F (l2)ψ†
f (k) 1

2 (1 ± γ5)ψg(l). (22)

The form factor F is related to the zero–mode wave func-
tion in momentum space Φ±(k; ξ±) and is equal to

F (k2) = −t d
dt

[I0(t)K0(t) − I1(t)K1(t)] ,

t =
1
2

√
k2ρ. (23)

4 Correlator in the DP effective action

In quasiclassical (saddle point) approximation any gluon
operator derives its main contribution from instanton back-
ground. In the following the operator g2GG̃(x) will be
considered. Owing to the low density of the instanton
medium, it is possible to neglect the overlap of the fields
of different instantons. In that case, the matrix element of
g2GG̃(x) with any other quark operator Q is

〈g2GG̃(x)Q〉N

= Z−1
N

∫
DψDψ† exp(

∫
d4xψ†i∂̂ψ)

×
(
N+

(
WGG̃+(x)Q

)
W

N+−1
+ W

N−
−

+N−
(
WGG̃−(x)Q

)
W

N+
+ W

N−−1
−

)
, (24)

where

WGG̃± = ±
(

4π2ρ̃2

Nc

)Nf ∫
d4z

V
f(x− z)

× det
f

(J±(z) + i
mNc

4π2ρ2 ). (25)

It is useful to introduce the external fields κ(x) and a(x),
coupled respectively to g2GG̃ and to the electromagnetic
quark current. Starting from (25), we find the partition
function Ẑ[κ, a] describing mesons [13] in presence of such
external fields:

Ẑ[κ, a] =
∫
DΦ+DΦ−exp(−W [Φ+, Φ−]), (26)

where

W [Φ+, Φ−] =
∫
d4x(wa + wb − wc),

wa = (Nf − 1)
N

2V
(
∏
f

M−1
f detΦ+)(Nf −1)−1

+ (+ → −),

wb =
Nc

4π2ρ2Tr(m(Φ+ + Φ−)),

wc =
∑

f

Trln
iD̂ + iF 2(Φ+β+ + Φ−β−)

i∂̂ + imf

,

D̂ = ∂̂ − ieQâ, β± =
[
(1 ± (κf))N−1

f

] 1
2
(1 ± γ5).

(27)

The saddle point of the integral (26) is located at (Φ±)fg =
Mfδfg, a self-consistency condition for the effective quark
mass, i.e.,

4NcV

∫
d4k

(2π)4
M2

fF
4(k2)

M2
fF

4(k2) + k2 = N +
mfMfV Nc

2π2ρ2 , (28)

being imposed, which describes also the shift of the effec-
tive mass of the quark Mf due to current mass mf . Ex-
panding (28) with respect to mf yields Mf = M0 + γmf ,
where

γ−1 = ρ2
∫ ∞

0
dk2 k4F 4(k2)

(M2
0F

4(k2) + k2)2
. (29)

Such integrals converge due to the form factor F (k2). As-
suming for the parameters ρ and R the values (6) – which
correspond to M0 = 340MeV – we find

γ = 2.4. (30)

The quark condensate is then given by

−V −1Z−1
N

dZN

dm
|κ=0 = −NcM0

2π2ρ2

= −(265MeV )3 ∼ Nc
1
ρR2 . (31)

This quantity can be also calculated by formula [21] −i <
ψ†ψ >Euclid = iT r S, yielding

−i < ψ†ψ >Euclid = −4Nc

∫
d4k

(2π)4
M0F

2(k2)
M2

0F
4(k2) + k2

= −(255MeV )3 ∼ Nc
1
ρR2 . (32)

Although coming from different formulas, predictions (31)
and (32) have the same parametric dependence and agree
with the phenomenological value, i.e.,

−i < ψ†ψ >Euclid= −(240 − 250MeV )3.

The three-point function can be derived from the func-
tional relation

τµν(x1, x2, x3) =
δŴ [κ, a]

δκ(x1)δaµ(x2)δaν(x3)
|κ,a=0, (33)

where [13]

Ŵ [κ, a] =
∑

f

Trln
iD̂ + iMfF

2(β+ + β−)

i∂̂ + imf

. (34)

Equation (34) implies that the vertex factors in the
diagram of the process are eQfγµ and iMffF

2N−1
f γ5.

Taking the Fourier transform of (33), we get

τ̂µν(q1, q2, q3) = f̂(q21)Nce
2
∑

f

Q2
f8M2

f ε
µνλσq2λ

×q3σΓf (q21 , q
2
2 , q

2
3), (35)
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where Γf (q21 , q
2
2 , q

2
3), the form factor coming from the di-

agram of the process considered, may be calculated ana-
lytically if we approximate the form factor F by 1. As a
result, the l.h.s. of (2) reduces to

(Nf
g2

16π2 )(
4e2Nc

g2Nf

∑
f

Q2
f )F (2)F̃ (3), (36)

which coincides with the first term at the r.h.s. of (2). If
we take into account the form factor F in (35), and give
the model parameters the values (6), in the chiral limit we
find [13] a variation of ∼ 17%.

Beyond the chiral limit the l.h.s. of (2) receives the
contribution

−0.2γρ
Nce

2

2π2

∑
f

Q2
fmf ε

µνλσq2λq3σ. (37)

This quantity has to be compared with the explicit con-
tribution of the current quark masses to the r.h.s. of (2),
which, too, may be calculated by formulas (34) and (33)
substituting iMffF

2N−1
f by 2imf in the γ5-vertex. Ap-

proximating again F ∼ 1, we obtain

−2i
∑

f

mf 〈0|ψ†
fγ5ψf |2γ〉

= −Nce
2

2π2

∑
f

Q2
f

mf

Mf
εµνλσq2λq3σ. (38)

The ratio of (37) to (38) at the parameter values (6) results
to be

0.2 γ ρM0 = 0.28 (39)

and not 1, as demanded by LET . We stress the net con-
tradiction with the theorem, not only in magnitude but
also in the sign. So the DP model (20) fails to reproduce
LET beyond chiral limit.

5 Further tests for instanton models

The matrix elements of the anomaly (1) between vacuum
and η-meson or π0 states lead to more stringent tests of
the DP model.

The partition function (27) describes mesons with ma-
trices Φ±, whose usual decomposition is [29]

Φ± = exp(± i

2
φ)Mσ exp(± i

2
φ), (40)

φ and σ being Nf ×Nf matrices. The saddle-point condi-
tion demands σ = 1, φ = 0. The usual decomposition for
the pseudoscalar fields φ =

∑8
0 λiφi may be used, where

Trλiλj = 2δij and φ8(3) can be identified with the η(π0)-
meson state.

Firstly we consider the matrix element in which the η-
meson is involved. Neglecting the small admixture factor
(∼ 0.1) with the pure singlet state [30], the matrix element
of the divergence (2) between the η-meson and the vacuum

leads to (3), which can be used as a test for instanton
models.

From previous considerations it follows that the fac-
tor g2GG̃ generates the vertex iMfF 2γ5N

−1
f and the η-

meson gives rise to iMλ8F
2γ5. The structure of the mass

matrix is

M = M0 + γ(ms(
1
3

− 1√
3
λ8) +mu

1 + τ3
2

+md
1 − τ3

2
).

Then at small q

〈0|Nf
g2

16π2GG̃|η〉 = 2γms(− 1√
3
tr(λ8)2)4Nc

×
∫

d4k

(2π)4
M0F

4(k2)
M2

0F
4(k2) + k2 . (41)

Applying the same procedure that led to (28), we get

〈0|Nf
g2

16π2GG̃|η〉

= 2γms(− 2√
3
)
N

VM0
∼ ms

N
1/2
c

ρR2 . (42)

The r.h.s. of (3) is

−2ims〈0|ψ†
sγ5ψs|η〉

= −2ms(− 2√
3
)4Nc

∫
d4k

(2π)4
M0F

2(k2)
M2

0F
4(k2) + k2

∼ ms
N

1/2
c

ρR2 . (43)

On the other hand (32) yields

−2ims〈0|ψ†
sγ5ψs|η〉 = −2ms(− 2√

3
)i < ψ†ψ > . (44)

Now let us confront such equations with some con-
sequences of the relation (4), concerning the π0-meson.
Repeating for this case the calculations applied to rela-
tion (3), the l.h.s. of (4) yields

〈0|Nf
g2

16π2GG̃|π0〉 = 2γ(mu −md)
N

VM0
, (45)

while the r.h.s. results in

−2i(mu −md)〈0|ψ† τ3
2
γ5ψ|π0〉

= −2(mu −md)i < ψ†ψ > . (46)

The ratio of (42) to (44) equals the ratio of (45) to (46)
and at the parameter values (6) it yields

N

VM0i < ψ†ψ >
= −0.66 (47)

and not 1, as demanded by relations (3) and (4). We stress
the net contradiction with the theorem, not only in the
magnitude, but also in the sign. Again the DP model (20)
strongly contradicts some consequences of the operator (1)
beyond the chiral limit.
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6 Conclusions

We recall the main results of our treatment. The LET in
chiral limit discriminates between the single-instanton ap-
proximation and the more sophisticated DP ansatz. More
refined tests beyond chiral limit are violated even by this
model. All the above illustrated tests could be used as
guides for building more and more satisfactory instanton
trial solutions.
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